## Tube and Cage $C_{60}H_{60}$ : A Comparison with $C_{60}F_{60}$

Jianfeng Jia,<sup>†</sup> Hai-Shun Wu,<sup>\*,†</sup> Xiao-Hong Xu,<sup>†</sup> Xian-Ming Zhang,<sup>†</sup> and Haijun Jiao<sup>\*,‡</sup>

School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004, China, and Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany

wuhs@dns.sxnu.edu.cn; haijun.jiao@catalysis.de

Received April 15, 2008

## ABSTRACT



Tube  $C_{60}H_{60}$  (5) with fused five-membered rings is more stable than the cage isomer (1) with isolated five-membered rings. Introduction of *endo* C-H bonds into structure 5 results in further stabilization, but the most stable tube structure with four *endo* C-H bonds (7) is higher in energy than the most stable cage structure with ten *endo* C-H bonds (3) by 74.2 kcal/mol. A comprehensive comparison of  $C_{60}H_{60}$  with  $C_{60}F_{60}$  has been made.

Very soon after the availability of  $C_{60}$  fullerene in gram scale,<sup>1</sup> hydrogenation of  $C_{60}$  has become the subject of extensive experimental studies.<sup>2–5</sup> The most abundant hydrogenation products are  $C_{60}H_{18}$  and  $C_{60}H_{36}$ .<sup>2,3</sup> The isolable derivative with the largest number of hydrogen atoms is actually  $C_{60}H_{44}$ ,<sup>4</sup> and  $C_{60}H_{52}$ <sup>5</sup> has been only observed in mass spectroscopy. For  $C_{60}H_{60}$ , there is no experimental information available, and the best information is from computation.<sup>6–11</sup>

On the basis of empirical potential analysis, Dunlap et al.<sup>7</sup> suggested that  $C_{60}H_{60}$  with *endo* C–H bonds is energetically more favored over the all-*exo* isomer. Molecular mechanics calculations by Saunders<sup>9</sup> showed that taking one C–H bond of the all-*exo*  $C_{60}H_{60}$  isomer inside can reduce the energy for about 53 kcal/mol, and the minimum energy isomer with ten C–H bonds inside ( $H_{10}@C_{60}H_{50}$ ) is more stable than the all-*exo* isomer by 400 kcal/mol. Doduiuk et al.<sup>10</sup> also showd that *endo*  $H_{10}@C_{60}H_{50}$  in  $D_5$  symmetry is more stable than the all-*exo* isomer and other *endo* isomers on the basis of molecular mechanics calculation. Recently Zdetsis<sup>11</sup> reported a more stable isomer with ten inside C–H bonds in  $D_{5d}$  symmetry over the all-*exo* isomer at B3LYP/TVZP. That

(11) Zdetsis, A. D. Phys. Rev. B 2008, 77, 115402.

<sup>&</sup>lt;sup>†</sup> Shanxi Normal University.

<sup>&</sup>lt;sup>‡</sup> Leibniz-Institut für Katalyse e.V. an der Universität Rostock.

<sup>(1)</sup> Kräschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. *Nature* **1990**, *347*, 354.

<sup>(2)</sup> Nossal, J.; Saini, R. K.; Alemany, L. B.; Meier, M.; Billups, W. E. Eur. J. Org. Chem. 2001, 4167, and references therein.

<sup>(3)</sup> Osaki, T.; Hamada, T.; Tai, Y. React. Kinet. Catal. Lett. 2003, 78, 217.

<sup>(4)</sup> Peera, A.; Saini, R. K.; Alemany, L. B.; Billups, W. E.; Saunders, M.; Khong, A.; Syamala, M. S.; Cross, R. J. *Eur. J. Org. Chem.* **2003**, 4140.

<sup>(5) (</sup>a) Darwish, A. D.; Taylor, R.; Loutfy, R. *Fullerenes 2000: Functionalized Fullerenes*; Electrochemical Society: Pennington, NJ, 2000; (Proceedings Vol. 2000-11); pp 179–185. (b) Talyzin, A. V.; Dzwilewski, A.; Sundqvist, B.; Tsybin, Y. O.; Purcell, J. M.; Marshall, A. G.; Shulga, Y. M.; McCammon, C.; Dubrovinsky, L. *Chem. Phys.* **2006**, *325*, 445.

<sup>(6)</sup> Cioslowski, J. Chem. Phys. Lett. 1991, 181, 68.

<sup>(7)</sup> Dunlap, B. I.; Brenner, D. W.; Mintmire, J. W.; Mowrey, R. C.; White, C. T. J. Phys. Chem. **1991**, 95, 5763.

<sup>(8) (</sup>a) Scuseria, G. E. Chem. Phys. Lett. **1991**, 176, 423. (b) Bakowies, D.; Thiel, W. Chem. Phys. Lett. **1992**, 192, 236. (c) Webster, A. Nature **1991**, 352, 412. (d) Gan, L.-H. Chem. Phys. Lett. **2006**, 421, 305. (e) Balasubramanian, K. Chem. Phys. Lett. **1991**, 183, 292.

<sup>(9)</sup> Saunders, M. Science **1991**, 253, 330.

<sup>(10)</sup> Dodziuk, H.; Nowinski, K. Chem. Phys. Lett. 1996, 249, 406.

inside C–H bonds can reduce the strain and stabilize the cage structures also has been found in large  $C_{80}H_{80}$  and  $C_{180}H_{180}$  cages with twenty  $(H_{20}@C_{80}H_{60}/I_h)$  and sixty  $(H_{60}@C_{180}H_{120}/I_h)$  inside C–H bonds,<sup>12</sup> respectively.

Recently, we<sup>13</sup> have found that a tube  $C_{60}F_{60}$  ( $D_{5d}$ ) with fused five-membered rings located at the ends of the tube is more stable than the all-*exo* cage isomer by 446.2 kcal/mol at B3LYP/6-31G\*. Furthermore, the tube structure with four *endo* C-F bonds (F<sub>4</sub>@C<sub>60</sub>F<sub>56</sub>, C<sub>2</sub>) is more stable than the most stable cage isomer with eight *endo* C-F bonds (F<sub>8</sub>@C<sub>60</sub>F<sub>52</sub>,  $D_2$ ) by 22.6 kcal/mol. Due to the structural similarity of C<sub>60</sub>H<sub>60</sub> and C<sub>60</sub>F<sub>60</sub>, it is interesting to know if C<sub>60</sub>H<sub>60</sub> also has the same structural and energetic scheme as C<sub>60</sub>F<sub>60</sub>.

All structures have been optimized at the HF/6-31G(d)and B3LYP/6-31G(d,p) levels of theory. These structures are characterized at HF/6-31G(d) as energy minimums. The relative energies in Table 1 for discussion and comparison

| Table 1. R | elative E | Energies | $(E_{\rm rel},$ | kcal/mol) | of | $C_{60}H_{60}$ | and | $C_{60}F_{60}$ |
|------------|-----------|----------|-----------------|-----------|----|----------------|-----|----------------|
|------------|-----------|----------|-----------------|-----------|----|----------------|-----|----------------|

| $\mathrm{C}_{60}\mathrm{H}_{60}$ | ${E}_{ m rel}$ | $\mathrm{C}_{60}\mathrm{F}_{60}$ | $E_{\rm rel}{}^{13}$ |
|----------------------------------|----------------|----------------------------------|----------------------|
| $C_{60}H_{60}/I_h(1)$            | 0.0            | $C_{60}F_{60}/I_h(1)$            | 0.0                  |
| $H_8@C_{60}H_{52}/D_2(2)$        | -353.9         | $F_8@C_{60}F_{52}/D_2$ (2)       | -575.6               |
| $H_{10}@C_{60}H_{50}/C_2(3)$     | -374.2         | $F_{10}@C_{60}F_{50}/C_2$ (3)    | -522.7               |
| $H_{12}@C_{60}H_{48}/C_i$ (4)    | -359.4         | $F_{12}@C_{60}F_{48}/C_i$ (4)    | -409.7               |
| $C_{60}H_{60}/D_{5d}$ (5)        | -232.0         | $C_{60}F_{60}/D_{5d}$ (5)        | -446.2               |
| $H_2@C_{60}H_{58}/C_{2h}$ (6)    | -275.8         | $F_2@C_{60}F_{58}/C_{2h}$ (6)    | -543.4               |
| $H_4@C_{60}H_{56}/C_2$ (7)       | -300.0         | $F_4@C_{60}F_{56}/C_2$ (7)       | -598.2               |
| $H_6@C_{60}H_{54}/C_2$ (8)       | -294.6         | $F_6@C_{60}F_{54}/C_2$ (8)       | -440.8               |

are obtained at B3LYP/6-31G(d,p). All calculations have been done with Gaussian 03 program.<sup>14</sup>

Figure 1 shows the cage structures (1-4) of  $C_{60}H_{60}$ . Isomer 1 is the reported structure with all-*exo* C–H bonds in  $I_h$  symmetry.<sup>6–8</sup> Isomers 2, 3, and 4 have cage structures with eight (H<sub>8</sub>@C<sub>60</sub>H<sub>52</sub>), ten (H<sub>10</sub>@C<sub>60</sub>H<sub>50</sub>), and twelve (H<sub>12</sub>@C<sub>60</sub>H<sub>48</sub>) *endo* C–H bonds, respectively. At B3LYP/ 6-31G(d,p), isomer 3 (H<sub>10</sub>@C<sub>60</sub>H<sub>50</sub>, actually in  $C_2$  symmetry) reported by Saunders is more stable than the  $D_5$  structure



Figure 1. B3LYP/6-31G(d,p)  $C_{60}H_{60}$  cage structures (1–4) with inside hydrogen atoms in red.

by Doduiuk<sup>10</sup> and the  $D_{5d}$  structure by Zdetsis<sup>11</sup> by 22.0 and 120.9 kcal/mol, respectively. The reported energetic order<sup>10</sup> of the cage isomers has been reproduced at B3LYP/6-31G(d,p). For example, the cage isomer of C<sub>60</sub>H<sub>60</sub> with ten *endo* C–H bonds (**3**) is the energy minimum structure and lower in energy than the all-*exo* isomer (**1**) by 374.2 kcal/mol and the cage isomers **2** and **4** by 20.3 and 14.8 kcal/mol, respectively.

Figure 2 shows the tube structures (5-8) of  $C_{60}H_{60}$ . Tube  $C_{60}H_{60}$  isomer (5) has all-*exo* C–H bonds and the twelve five-membered rings fused at the ends of the tube, whereas isomers **6**, **7**, and **8** have tube structures with two  $(H_2@C_{60}H_{58})$ , four  $(H_4@C_{60}H_{56})$ , and six  $(H_6@C_{60}H_{54})$  *endo* C–H bonds, respectively.

As shown in Table 1, tube isomer **5** is lower in energy than cage isomer **1** by 232.0 kcal/mol. Both **1** and **5** have all-*exo* C–H bonds and the same numbers of five- and sixmembered rings, and they differ only in the distribution of the five-membered rings. Therefore, the fused five-membered rings should be the decisive factor for the stability of **5**, while the five-membered rings in **1** are perfectly isolated. This is in full agreement with  $C_{60}F_{60}$ .<sup>13</sup> Recent experimental and theoretical studies also imply that carbon cages with fused five-membered rings, in opposition to the isolated pentagon rule for the stability of carbon fullerenes,<sup>15</sup> can be essentially stabilized by either exohedral or endohedral derivatization. For example, Wang et al.<sup>16</sup> have reported a  $C_{64}H_4$  ( $C_{3\nu}$ ) cage with one triquinancene unit containing three fused fivemembered rings. Popov et al.<sup>17</sup> found that some endohedral

<sup>(12)</sup> Linnolahti, M.; Karttunen, A. J.; Pakkanen, T. A. ChemPhysChem 2006, 7, 1661.

<sup>(13)</sup> Jia, J.; Wu, H.-S.; Xu, X.-H.; Zhang, X.-M.; Jiao, H. J. Am. Chem. Soc. 2008, 130, 3985.

<sup>(14)</sup> Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T. ; Kudin, K. N. ; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Cossi, M.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B. Adamo, C. ; Jaramillo, J. ; Gomperts, R. ; Stratmann, R. E. ; Yazyev, O. ; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y. ; Morokuma, K. ; Voth, G. A. ; Salvador, P. ; Dannenberg, J. J. ; Zakrzewski, V. G. ; Dapprich, S. ; Daniels, A. D. ; Strain, M. C. ; Farkas, O. ; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V. ; Cui, Q.; Baboul, A. G.; Člifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G. ; Liashenko, A. ; Piskorz, P. ; Komaromi, I. ; Martin, R. L. ; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W. ; Gonzalez, C. ; Pople, J. A. GAUSSIAN 03, Revision C 02; Gaussian, Inc.: Wallingford CT, 2004.

 <sup>(15)</sup> Kroto, H. W. Nature 1987, 329, 529. (b) Schmalz, T. G.; Seitz,
 W. A.; Klein, D. J.; Hite, G. E. J. Am. Chem. Soc. 1988, 110, 1113.

<sup>(16)</sup> Wang, C.-R.; Shi, Z.-Q.; Wan, L.-J.; Lu, X.; Dunsch, L.; Shu, C.-Y.; Tang, Y.-L.; Shinohara, H. J. Am. Chem. Soc. **2006**, 128, 6605, and references cited therein.

<sup>(17)</sup> Popov, A. A.; Dunsch, L. J. Am. Chem. Soc. 2007, 129, 11835, and references therein.



Figure 2. B3LYP/6-31G(d,p)  $C_{60}H_{60}$  tube isomers (5–8) with inside hydrogen atoms in red.

 $(M_3N)@C_{2n}$  (M = Sc, Y; 2n = 68-84) fullerenes with fused five-membered ring pairs (pentalene like unit) are more stable than those with isolated five-membered rings.

It is obvious that the fused five-membered rings are planar or nearly planar and the six-membered rings have boat conformation in **5**. In contrast, **1** has not only planar fivemembered rings but also planar six-membered rings. In **1**, the distances of the nonbonded hydrogen atoms are 1.982 and 2.020 Å. In **5**, the distances of the nonbonded hydrogen atoms of the five-membered rings are 2.329 and 2.306 Å, and those of the six-membered rings are 2.146, 2.117, 2.083, 2.120, and 2.086Å. Longer distances of nonbonded hydrogen atoms and boat-like six-membered rings of isomer **5** imply that the torsional strain in **5** is less than that in **1**.

To model the stability of the five- and six-membered rings in **1** and **5**, the unique five- and six-membered rings are cut from **1** and **5** and then optimized at B3LYP/6-31G(d,p) by saturating them with hydrogen atoms ( $C_5H_{10}$  and  $C_6H_{12}$ ) and keeping all bond angles fixed. The calculated results show that two unique five-membered rings in **5** are more stable than that in **1** by 27.2 and 23.0 kcal/mol, and the two unique six-membered rings in **5** are more stable than that in **1** by 18.1 and 12.9 kcal/mol, respectively. Both the five- and sixmembered rings in **5** are more stable than those in **1**, with the five-membered rings being more remarkable.

All carbon atoms in  $C_{60}H_{60}$  are tetrahedral and should prefer sp<sup>3</sup> hybridization. Detailed inspection of structures **1** and **5** indicates that the distortion of the angles with respect to sp<sup>3</sup> hybridization at the carbon vertices in **1** is stronger than that in 5. Therefore, we define angle distortion (*AD*) of a carbon vertex according to eq 1, where  $\alpha$  and  $\beta$  are the CCC and HCC angles at the carbon atom, respectively. Their reference values of 111.47° and 107.39° are obtained from a fully optimized perhydrogenated graphite single sheet at the B3LYP/6-31G(d,p) level by imposing periodic boundary condition<sup>18</sup> on a two-dimensional hexagonal unit cell with two carbon atoms and two hydrogen atoms (Figure 3).



**Figure 3.** Unit cell of perhydrogenated graphite in top (a) and side view (b).

$$AD = \Sigma(111.47^{\circ} - \alpha) + \Sigma(107.39^{\circ} - \beta)$$
(1)

In 1, the *AD* for each carbon vertex is  $37.7^{\circ}$ . In 5, the *ADs* of the carbon vertice rounded by three five-membered rings are  $20.0^{\circ}$ , and those by two five-membered rings and one six-membered ring and by one five-membered ring and two six-membered rings are  $23.2^{\circ}$  and  $24.5^{\circ}$ , respectively, whereas those by three six-membered rings are  $31.4^{\circ}$ ,  $31.1^{\circ}$ , and  $31.3^{\circ}$ , respectively. The *ADs* of all carbon vertices in 5 are smaller than that in 1, indicating lower angle strains in 5 compared with those in 1. Moreover, all vertices of five-membered rings have small *ADs*, revealing that fusion of five-membered rings in perhydrogenated fullerene can reduce the angle strains.

Inspired by the results of  $C_{60}F_{60}$ ,<sup>13</sup> that introduction of *endo* C-F bonds of the tube structure further reduces the strain, we are interested to know the similarity between  $C_{60}H_{60}$  and  $C_{60}F_{60}$ . Starting from **5**, the most stable isomer with two *endo* C-H bonds is **6** (H<sub>2</sub>@C<sub>60</sub>H<sub>58</sub>/C<sub>2h</sub>), as expected, which is more stable than **5** by 43.8 kcal/mol. Further, the most stable tube isomer with four *endo* C-H bonds is **7** (H<sub>4</sub>@C<sub>60</sub>H<sub>56</sub>/C<sub>2</sub>), which is more stable than **5** by 68.0 kcal/mol. However, further increase of *endo* C-H bonds from four to six raises the energy, and the most stable tube isomer with six *endo* C-H bonds is **8** (H<sub>6</sub>@C<sub>60</sub>H<sub>54</sub>/C<sub>2</sub>), which is more stable than **5** by 62.6 kcal/mol but less stable than **7** by 5.4 kcal/mol.

Although *endo* isomers 6, 7, and 8 are more stable than 5, they are less stable than the cage *endo* isomers 2, 3, and 4. The most stable tube isomer 7 is higher in energy than the most stable cage *endo* isomer 3 by 74.2 kcal/mol, whereas for  $C_{60}F_{60}$ , on the contrary, the most stable tube *endo* isomer 7 is more stable than the most stable cage *endo* isomer 2 by 22.6 kcal/mol.<sup>13</sup>

<sup>(18)</sup> Kudin, K. N.; Scuseria, G. E. Phys. Rev. B 2000, 61, 16440.

Now, it is interesting to compare **3** and **7** in detail. Due to the narrow inner space of tube  $C_{60}H_{60}$ , **7** can adopt much fewer *endo* C–H bonds than **3**. The shortest nonbonded hydrogen distances of **7** are 1.678 and 2.051 Å, and those of **3** are 1.914 and 2.139 Å. Further introduction of *endo* C–H bonds in **7** will raise the nonbonded hydrogen repulsive interactions considerably, as shown in **8** with the shortest H–H distances of 1.456 Å.

In 7, each *endo* C–H bond connects with three sixmembered rings. Detailed analysis of the structure shows that each *endo* C–H bond changes one boat-like sixmembered ring into chair-like conformation, and another two boat-like six-membered rings change from *eclipsed* to *gauche* conformation. It reveals that *endo* C–H bonds can further decrease angle strains. This is confirmed by the change of the average *AD*, which of 7 is 20.7°, and less than that of 5 by 6.2°. In 3, each *endo* C–H bond connects with one fivemembered ring and two six-membered rings. Compared with 1, not only do the shortest distances of the *exo* nonbonded hydrogen atoms of 3 become longer (>2.051 vs 1.982 and 2.020 Å), but also the average *AD* changes from 37.7° to 18.6°, which is also less than that of 7 (20.7°). This explains the higher stability of 3 over 7.

It is also interesting to compare the relative stability of  $C_{60}H_{60}$  and  $C_{60}F_{60}$  on the basis of homodestomic reaction equations 2 and 3. These negative reaction energies (-836.6 and -622.4 kcal/mol, respectively) show clearly that  $C_{60}H_{60}$  in both cage and tube configurations are much less strained than their  $C_{60}F_{60}$  counterparts.

$$\begin{split} & C_{60}F_{60}(1) + 60(H_{3}C)_{3}C - H = C_{60}H_{60}(1) + 60(H_{3}C)_{3}C - F \\ & \Delta E(2) = -836.6 \text{kcal/mol}(2) \\ & C_{60}F_{60}(5) + 60(H_{3}C)_{3}C - H = C_{60}H_{60}(5) + 60(H_{3}C)_{3}C - F \\ & \Delta E(3) = -622.4 \text{kcal/mol}(3) \\ & C_{20}F_{20}(1) + 20(H_{3}C)_{3}C - H = C_{20}H_{20}(1) + 20(H_{3}C)_{3}C - F \\ & \Delta E(4) = -162.5 \text{kcal/mol}(4) \\ & \text{Further comparison has been made for dodecabedron} \end{split}$$

Further comparison has been made for dodecahedron  $(C_{20}H_{20})$  with its perfluorinated counterpart  $C_{20}F_{20}^{19}$  in eq 4. The negative reaction energy (-162.5 kcal/mol) shows that  $C_{20}F_{20}$  is much more strained than  $C_{20}H_{20}$ , which has been considered strain-free.<sup>20</sup>

For estimating the strength of the nonbonded fluorine repulsive interaction in  $C_{60}F_{60}$  and  $C_{20}F_{20}$ , we have analyzed the effect of fluorine substitution in ethane. Our example is the *eclipsed cis*-1,2-difluoroethane (*cis*-FH<sub>2</sub>C-CH<sub>2</sub>F), along with ethane and fluoroethane as reference counterparts in the same conformation. The effect of fluorine substitution can be estimated on the basis of homodesmotic reaction eq 5.

*cis*-FH<sub>2</sub>C-CH<sub>2</sub>F+CH<sub>3</sub>-CH<sub>3</sub>=2FCH<sub>2</sub>-CH<sub>3</sub>

 $\Delta E$ (eclipsed)=-5.69kcal/mol(5)

The negative reaction energy reveals a repulsive or destabilizing effect of two C-F bonds in *cis*-1,2-difluoroethane by 5.69 kcal/mol. This is relatively a large number for only one nonbounded fluorine pair.

On the basis of this quantity, it is interesting to compare the strain in  $C_{20}F_{20}$  as well as in the tube (**5**) and cage (**1**) structures of  $C_{60}F_{60}$ . For  $C_{20}F_{20}$ , there are thirty nonbonded fluorine pairs, and the expected repulsive interaction should be 170.7 kcal/mol, which is very close to the estimated value of 162.5 kcal/mol from eq 4. This shows roughly an additivity of the strain effects and reveals that the strain in  $C_{20}F_{20}$  is solely originated from the repulsive interaction of the nonbonded fluorine atoms. It is indeed not surprising since the distance of the nonbonded fluorine atoms in *cis*-1,2-difluoroethane is close to that in  $C_{20}F_{20}$  (2.498 vs 2.531 Å, respectively).

For **1** and **5** with ninety nonbonded fluorine pairs, the excepted repulsive interaction should be 512.1 kcal/mol, and this value is much smaller than those from eqs 2 and 3 (836.6 and 622.4 kcal/mol, respectively). Such large discrepancies are due to the much shorter distances of the nonbonded fluorine atoms in **1** (2.177 and 2.146 Å) and in **5** (2.506 and 2.473 Å for the five-membered rings, and 2.317, 2.267, 2.291 and 2.318 Å for the six-membered rings). Thus, nonbonded fluorine repulsive interaction is the driving force for the instability of  $C_{20}F_{20}$  and  $C_{60}F_{60}$ , in agreement with the analysis of Cioslowski.<sup>6</sup>

We conclude that, as for  $C_{60}F_{60}$ , the tube  $C_{60}H_{60}$  (**5**) is more stable than cage  $C_{60}H_{60}$  with all-*exo* C–H bonds (**1**), and the driving force is the fused five-membered rings, which reduce not only the angle strain but also the torsional strain. Introduction of *endo* C–H bonds further reduce the strains, but in much less extent, and the cage isomer with ten *endo* C–H bonds (**3**) is more stable than the tube isomer with four *endo* C–H bond (**7**). This is in opposition to the stability of  $C_{60}F_{60}$ . Compared with  $C_{60}H_{60}$  and  $C_{20}H_{20}$ ,  $C_{60}F_{60}$  and  $C_{20}F_{20}$  are more highly strained, and the reason for that is the repulsive interaction of the nonbonded fluorine atoms.

**Acknowledgment.** This work was supported by the Natural Science Foundations of China (20673070).

**Supporting Information Available:** The computed energetic data and the optimized Cartesian coordinates for all isomers are included. This material is available free of charge via the Internet at http://pubs.acs.org

OL8008649

<sup>(19)</sup> Zhang, C.-Y.; Wu, H.-S.; Jiao, H. J. Mol. Model. 2007, 13, 499.
(20) Wu, H.-S.; Qin, X.-F.; Xu, X.-H.; Jiao, H.; Schleyer, P. v. R J. Am. Chem. Soc. 2005, 127, 2334.